A Tour of Go
Outline:
Flow control statements
For
package main
import "fmt"
func main() {
sum := 0
for i := 0; i < 10; i++ {
sum += i
}
fmt.Println(sum)
}
- there are no parentheses surrounding the three components of the for statement
- the braces
{ }
are always required. - The init and post statement are optional.
for ; sum < 1000; { sum += sum }
for
is Go’swhile
for sum < 1000 { sum += sum }
- forever
for { }
If
package main
import (
"fmt"
"math"
)
func sqrt(x float64) string {
if x < 0 {
return sqrt(-x) + "i"
}
return fmt.Sprint(math.Sqrt(x))
}
func main() {
fmt.Println(sqrt(2), sqrt(-4))
}
- If with a short statement
func pow(x, n, lim float64) float64 { if v := math.Pow(x, n); v < lim { return v } return lim }
- If and else
func pow(x, n, lim float64) float64 { if v := math.Pow(x, n); v < lim { return v } else { fmt.Printf("%g >= %g\n", v, lim) } // can't use v here, though return lim }
Switch
package main
import (
"fmt"
"runtime"
)
func main() {
fmt.Print("Go runs on ")
switch os := runtime.GOOS; os {
case "darwin":
fmt.Println("OS X.")
case "linux":
fmt.Println("Linux.")
default:
// freebsd, openbsd,
// plan9, windows...
fmt.Printf("%s.", os)
}
}
- the
break
statement that is needed at the end of each case in those languages is provided automatically in Go. - Switch cases evaluate cases from top to bottom, stopping when a case succeeds.
- Switch without a condition is the same as
switch true
.package main import ( "fmt" "time" ) func main() { t := time.Now() switch { case t.Hour() < 12: fmt.Println("Good morning!") case t.Hour() < 17: fmt.Println("Good afternoon.") default: fmt.Println("Good evening.") } }
Defer
- A
defer
statement defers the execution of a function until the surrounding function returns. - The deferred call’s arguments are evaluated immediately, but the function call is not executed until the surrounding function returns.
package main
import "fmt"
func main() {
defer fmt.Println("world")
fmt.Println("hello")
}
Output:
hello
world
Stacking defers
- Deferred function calls are pushed onto a
stack
. When a function returns, its deferred calls are executed inlast-in-first-out
order.
package main
import "fmt"
func main() {
fmt.Println("counting")
for i := 0; i < 10; i++ {
defer fmt.Println(i)
}
fmt.Println("done")
}
More Types
Pointers
- Go has pointers. A pointer holds the memory address of a value.
package main
import "fmt"
func main() {
i, j := 42, 2701
p := &i // point to i
fmt.Println(*p) // read i through the pointer
*p = 21 // set i through the pointer
fmt.Println(i) // see the new value of i
p = &j // point to j
*p = *p / 37 // divide j through the pointer
fmt.Println(j) // see the new value of j
}
Structs
package main
import "fmt"
type Vertex struct {
X int
Y int
}
func main() {
v := Vertex{1, 2}
v.X = 4
fmt.Println(v.X)
}
- A
struct
is a collection of fields. - Struct fields are accessed using a dot.
- Struct fields can be accessed through a struct pointer.
- Struct Literals
package main import "fmt" type Vertex struct { X, Y int } var ( v1 = Vertex{1, 2} // has type Vertex v2 = Vertex{X: 1} // Y:0 is implicit v3 = Vertex{} // X:0 and Y:0 p = &Vertex{1, 2} // has type *Vertex ) func main() { fmt.Println(v1, p, v2, v3) }
Arrays
package main
import "fmt"
func main() {
var a [2]string
a[0] = "Hello"
a[1] = "World"
fmt.Println(a[0], a[1])
fmt.Println(a)
primes := [6]int{2, 3, 5, 7, 11, 13}
fmt.Println(primes)
}
Slices
- An
array
has a fixed size. - A
slice
, on the other hand, is a dynamically-sized, flexible view into the elements of an array. - In practice, slices are much more common than arrays.
package main
import "fmt"
func main() {
primes := [6]int{2, 3, 5, 7, 11, 13}
var s []int = primes[1:4]
fmt.Println(s)
}
Slices are like references to arrays
- A slice does not store any data, it just describes a section of an underlying array.
- Changing the elements of a slice modifies the corresponding elements of its underlying array.
- Other slices that share the same underlying array will see those changes.
package main
import "fmt"
func main() {
names := [4]string{
"John",
"Paul",
"George",
"Ringo",
}
fmt.Println(names)
a := names[0:2]
b := names[1:3]
fmt.Println(a, b)
b[0] = "XXX"
fmt.Println(a, b)
fmt.Println(names)
}
Output:
[John Paul George Ringo]
[John Paul] [Paul George]
[John XXX] [XXX George]
[John XXX George Ringo]
Slice length and capacity
- A slice has both a length and a capacity.
- The length of a slice is the number of elements it contains.
- The capacity of a slice is the number of elements in the underlying array, counting from the first element in the slice.
- The length and capacity of a slice s can be obtained using the expressions
len(s)
andcap(s)
.
package main
import "fmt"
func main() {
s := []int{2, 3, 5, 7, 11, 13}
printSlice(s)
// Slice the slice to give it zero length.
s = s[:0]
printSlice(s)
// Extend its length.
s = s[:4]
printSlice(s)
// Drop its first two values.
s = s[2:]
printSlice(s)
}
func printSlice(s []int) {
fmt.Printf("len=%d cap=%d %v\n", len(s), cap(s), s)
}
Output:
len=6 cap=6 [2 3 5 7 11 13]
len=0 cap=6 []
len=4 cap=6 [2 3 5 7]
len=2 cap=4 [5 7]
- Creating a slice with make
b := make([]int, 0, 5) // len(b)=0, cap(b)=5 b = b[:cap(b)] // len(b)=5, cap(b)=5 b = b[1:] // len(b)=4, cap(b)=4
Creating a slice with make
- Slices can be created with the built-in
make
function; this is how you create dynamically-sized arrays. - The
make
function allocates a zeroed array and returns a slice that refers to that array:
package main
import "fmt"
func main() {
a := make([]int, 5)
printSlice("a", a)
b := make([]int, 0, 5)
printSlice("b", b)
c := b[:2]
printSlice("c", c)
d := c[2:5]
printSlice("d", d)
}
func printSlice(s string, x []int) {
fmt.Printf("%s len=%d cap=%d %v\n",
s, len(x), cap(x), x)
}
a len=5 cap=5 [0 0 0 0 0]
b len=0 cap=5 []
c len=2 cap=5 [0 0]
d len=3 cap=3 [0 0 0]
Appending to a slice
package main
import "fmt"
func main() {
var s []int
printSlice(s)
// append works on nil slices.
s = append(s, 0)
printSlice(s)
// The slice grows as needed.
s = append(s, 1)
printSlice(s)
// We can add more than one element at a time.
s = append(s, 2, 3, 4)
printSlice(s)
}
func printSlice(s []int) {
fmt.Printf("len=%d cap=%d %v\n", len(s), cap(s), s)
}
Output:
len=0 cap=0 []
len=1 cap=1 [0]
len=2 cap=2 [0 1]
len=5 cap=6 [0 1 2 3 4]
Range
- The
range
form of the for loop iterates over aslice
ormap
. - When ranging over a
slice
, two values are returned for each iteration.- The first is the index, and the second is a copy of the element at that index.
package main
import "fmt"
var pow = []int{1, 2, 4, 8, 16, 32, 64, 128}
func main() {
for i, v := range pow {
fmt.Printf("2**%d = %d\n", i, v)
}
}
- You can skip the index or value by assigning to
_
.
Maps
- A
map
maps keys to values. - The zero value of a map is
nil
. A nil map has no keys, nor can keys be added. - The make function returns a
map
of the given type, initialized and ready for use.
package main
import "fmt"
type Vertex struct {
Lat, Long float64
}
var m = map[string]Vertex{
"Bell Labs": {
40.68433, -74.39967,
},
"Google": {
37.42202, -122.08408,
},
}
func main() {
fmt.Println(m)
}
Mutating Maps
package main
import "fmt"
func main() {
m := make(map[string]int)
m["Answer"] = 42
fmt.Println("The value:", m["Answer"])
m["Answer"] = 48
fmt.Println("The value:", m["Answer"])
delete(m, "Answer")
fmt.Println("The value:", m["Answer"])
v, ok := m["Answer"]
fmt.Println("The value:", v, "Present?", ok)
}
Output:
The value: 42
The value: 48
The value: 0
The value: 0 Present? false
Function values
- Functions are values too. They can be passed around just like other values.
- Function values may be used as function arguments and return values.
package main
import (
"fmt"
"math"
)
func compute(fn func(float64, float64) float64) float64 {
return fn(3, 4)
}
func main() {
hypot := func(x, y float64) float64 {
return math.Sqrt(x*x + y*y)
}
fmt.Println(hypot(5, 12))
fmt.Println(compute(hypot))
fmt.Println(compute(math.Pow))
}
Output:
13
5
81
Function closures
- Go functions may be closures.
- A closure is a function value that references variables from outside its body.
- The function may access and assign to the referenced variables; in this sense the function is “bound” to the variables.
- For example, the
adder
function returns a closure. Each closure is bound to its own sum variable.
package main
import "fmt"
func adder() func(int) int {
sum := 0
return func(x int) int {
sum += x
return sum
}
}
func main() {
pos, neg := adder(), adder()
for i := 0; i < 10; i++ {
fmt.Println(
pos(i),
neg(-2*i),
)
}
}
Output:
0 0
1 -2
3 -6
6 -12
10 -20
15 -30
21 -42
28 -56
36 -72
45 -90
Method and Interfaces
Methods
- Go does not have classes. However, you can define methods on types.
- A method is a function with a special
receiver
argument. - The
receiver
appears in its own argument list between the func keyword and the method name. - In this example, the
Abs
method has areceiver
of typeVertex
namedv
.
package main
import (
"fmt"
"math"
)
type Vertex struct {
X, Y float64
}
func (v Vertex) Abs() float64 {
return math.Sqrt(v.X*v.X + v.Y*v.Y)
}
func main() {
v := Vertex{3, 4}
fmt.Println(v.Abs())
}
- Remember: a method is just a function with a receiver argument.
- You can declare a method on non-struct types, too.
package main
import (
"fmt"
"math"
)
type MyFloat float64
func (f MyFloat) Abs() float64 {
if f < 0 {
return float64(-f)
}
return float64(f)
}
func main() {
f := MyFloat(-math.Sqrt2)
fmt.Println(f.Abs())
}
Pointer receivers
- You can declare methods with pointer receivers.
- Methods with pointer receivers can modify the value to which the receiver points
- Since methods often need to modify their receiver, pointer receivers are more common than value receivers.
package main
import (
"fmt"
"math"
)
type Vertex struct {
X, Y float64
}
func (v Vertex) Abs() float64 {
return math.Sqrt(v.X*v.X + v.Y*v.Y)
}
func (v *Vertex) Scale(f float64) {
v.X = v.X * f
v.Y = v.Y * f
}
func main() {
v := Vertex{3, 4}
v.Scale(10)
fmt.Println(v.Abs())
}
- With a value receiver, the Scale method operates on a copy of the original Vertex value.
- (This is the same behavior as for any other function argument.)
- The Scale method must have a pointer receiver to change the
Vertex
value declared in themain
function.
Choosing a value or pointer receiver
- There are two reasons to use a pointer receiver.
- The first is so that the method can modify the value that its receiver points to.
- The second is to avoid copying the value on each method call.
- This can be more efficient if the receiver is a large struct, for example.
- In general, all methods on a given type should have either value or pointer receivers, but not a mixture of both.
package main
import (
"fmt"
"math"
)
type Vertex struct {
X, Y float64
}
func (v *Vertex) Scale(f float64) {
v.X = v.X * f
v.Y = v.Y * f
}
func (v *Vertex) Abs() float64 {
return math.Sqrt(v.X*v.X + v.Y*v.Y)
}
func main() {
v := &Vertex{3, 4}
fmt.Printf("Before scaling: %+v, Abs: %v\n", v, v.Abs())
v.Scale(5)
fmt.Printf("After scaling: %+v, Abs: %v\n", v, v.Abs())
}
Interfaces
- An
interface
type is defined as a set of method signatures. - A value of interface type can hold any value that implements those methods.
package main
import (
"fmt"
"math"
)
type Abser interface {
Abs() float64
}
func main() {
var a Abser
f := MyFloat(-math.Sqrt2)
v := Vertex{3, 4}
a = f // a MyFloat implements Abser
a = &v // a *Vertex implements Abser
fmt.Println(a.Abs())
}
type MyFloat float64
func (f MyFloat) Abs() float64 {
if f < 0 {
return float64(-f)
}
return float64(f)
}
type Vertex struct {
X, Y float64
}
func (v *Vertex) Abs() float64 {
return math.Sqrt(v.X*v.X + v.Y*v.Y)
}
Interface values
- Under the covers, interface values can be thought of as a tuple of a value and a concrete type
package main
import (
"fmt"
"math"
)
type I interface {
M()
}
type T struct {
S string
}
func (t *T) M() {
fmt.Println(t.S)
}
type F float64
func (f F) M() {
fmt.Println(f)
}
func main() {
var i I
i = &T{"Hello"}
describe(i)
i.M()
i = F(math.Pi)
describe(i)
i.M()
}
func describe(i I) {
fmt.Printf("(%v, %T)\n", i, i)
}
Output:
(&{Hello}, *main.T)
Hello
(3.141592653589793, main.F)
3.141592653589793
Type assertions
- A type
assertion
provides access to an interface value’s underlying concrete value.
package main
import "fmt"
func main() {
var i interface{} = "hello"
s := i.(string)
fmt.Println(s)
s, ok := i.(string)
fmt.Println(s, ok)
f, ok := i.(float64)
fmt.Println(f, ok)
f = i.(float64) // panic
fmt.Println(f)
}
Output:
hello
hello true
0 false
panic: interface conversion: interface {} is string, not float64
Stringers
package main
import "fmt"
type Person struct {
Name string
Age int
}
func (p Person) String() string {
return fmt.Sprintf("%v (%v years)", p.Name, p.Age)
}
func main() {
a := Person{"Arthur Dent", 42}
z := Person{"Zaphod Beeblebrox", 9001}
fmt.Println(a, z)
}
Output:
Arthur Dent (42 years) Zaphod Beeblebrox (9001 years)
Errors
package main
import (
"fmt"
"time"
)
type MyError struct {
When time.Time
What string
}
func (e *MyError) Error() string {
return fmt.Sprintf("at %v, %s",
e.When, e.What)
}
func run() error {
return &MyError{
time.Now(),
"it didn't work",
}
}
func main() {
if err := run(); err != nil {
fmt.Println(err)
}
}
Output:
at 2018-04-25 17:29:12.80395766 +0900 JST m=+0.000299919, it didn't work
Readers
package main
import (
"fmt"
"io"
"strings"
)
func main() {
r := strings.NewReader("Hello, Reader!")
b := make([]byte, 8)
for {
n, err := r.Read(b)
fmt.Printf("n = %v err = %v b = %v\n", n, err, b)
fmt.Printf("b[:n] = %q\n", b[:n])
if err == io.EOF {
break
}
}
}
Output:
n = 8 err = <nil> b = [72 101 108 108 111 44 32 82]
b[:n] = "Hello, R"
n = 6 err = <nil> b = [101 97 100 101 114 33 32 82]
b[:n] = "eader!"
n = 0 err = EOF b = [101 97 100 101 114 33 32 82]
b[:n] = ""
Concurrency
Goroutines
- A
goroutine
is a lightweight thread managed by the Go runtime.
package main
import (
"fmt"
"time"
)
func say(s string) {
for i := 0; i < 5; i++ {
time.Sleep(100 * time.Millisecond)
fmt.Println(s)
}
}
func main() {
go say("world")
say("hello")
}
Output:
world
hello
hello
world
world
hello
world
hello
world
hello
Channels
- Channels are a typed conduit through which you can send and receive values with the channel operator,
<-
ch <- v // Send v to channel ch. v := <-ch // Receive from ch, and // assign value to v.
- Like maps and slices, channels must be created before use:
ch := make(chan int)
- By default, sends and receives block until the other side is ready.
- This allows goroutines to synchronize without explicit locks or condition variables.
package main
import "fmt"
func sum(s []int, c chan int) {
sum := 0
for _, v := range s {
sum += v
}
c <- sum // send sum to c
}
func main() {
s := []int{7, 2, 8, -9, 4, 0}
c := make(chan int)
go sum(s[:len(s)/2], c)
go sum(s[len(s)/2:], c)
x, y := <-c, <-c // receive from c
fmt.Println(x, y, x+y)
}
Output:
-5 17 12
Buffered Channels
- Channels can be buffered.
- Provide the buffer length as the second argument to make to initialize a buffered channel:
ch := make(chan int, 100)
- Sends to a buffered channel block only when the buffer is full.
- Receives block when the buffer is empty.
package main
import "fmt"
func main() {
ch := make(chan int, 2)
ch <- 1
ch <- 2
fmt.Println(<-ch)
fmt.Println(<-ch)
}
Output:
1
2
Range and Close
- A sender can close a channel to indicate that no more values will be sent.
- Receivers can test whether a channel has been closed by assigning a second parameter to the receive expression: after
v, ok := <-ch
ok
isfalse
if there are no more values to receive and the channel is closed.
- The loop
for i := range c
receives values from the channel repeatedly until it is closed. - Only the sender should close a channel, never the receiver. Sending on a closed channel will cause a panic.
- Channels aren’t like files; you don’t usually need to close them. Closing is only necessary when the receiver must be told there are no more values coming, such as to terminate a range loop.
package main
import (
"fmt"
)
func fibonacci(n int, c chan int) {
x, y := 0, 1
for i := 0; i < n; i++ {
c <- x
x, y = y, x+y
}
close(c)
}
func main() {
c := make(chan int, 10)
go fibonacci(cap(c), c)
for i := range c {
fmt.Println(i)
}
}
Output:
0
1
1
2
3
5
8
13
21
34
Select
- The
select
statement lets a goroutine wait on multiple communication operations. - A
select
blocks until one of its cases can run, then it executes that case. It chooses one at random if multiple are ready.
package main
import "fmt"
func fibonacci(c, quit chan int) {
x, y := 0, 1
for {
select {
case c <- x:
x, y = y, x+y
case <-quit:
fmt.Println("quit")
return
}
}
}
func main() {
c := make(chan int)
quit := make(chan int)
go func() {
for i := 0; i < 10; i++ {
fmt.Println(<-c)
}
quit <- 0
}()
fibonacci(c, quit)
}
Output:
0
1
1
2
3
5
8
13
21
34
quit
Default Selection
package main
import (
"fmt"
"time"
)
func main() {
tick := time.Tick(100 * time.Millisecond)
boom := time.After(500 * time.Millisecond)
for {
select {
case <-tick:
fmt.Println("tick.")
case <-boom:
fmt.Println("BOOM!")
return
default:
fmt.Println(" .")
time.Sleep(50 * time.Millisecond)
}
}
}
Output:
.
.
tick.
.
.
tick.
.
.
tick.
.
.
tick.
.
.
BOOM!
Mutex
- This concept is called mutual exclusion, and the conventional name for the data structure that provides it is mutex.
- Go’s standard library provides mutual exclusion with
sync.Mutex
and its two methods:Lock
Unlock
- We can define a block of code to be executed in mutual exclusion by surrounding it with a call to
Lock
andUnlock
as shown on theInc
method. - We can also use
defer
to ensure themutex
will be unlocked as in theValue
method.
package main
import (
"fmt"
"sync"
"time"
)
// SafeCounter is safe to use concurrently.
type SafeCounter struct {
v map[string]int
mux sync.Mutex
}
// Inc increments the counter for the given key.
func (c *SafeCounter) Inc(key string) {
c.mux.Lock()
// Lock so only one goroutine at a time can access the map c.v.
c.v[key]++
c.mux.Unlock()
}
// Value returns the current value of the counter for the given key.
func (c *SafeCounter) Value(key string) int {
c.mux.Lock()
// Lock so only one goroutine at a time can access the map c.v.
defer c.mux.Unlock()
return c.v[key]
}
func main() {
c := SafeCounter{v: make(map[string]int)}
for i := 0; i < 1000; i++ {
go c.Inc("somekey")
}
time.Sleep(time.Second)
fmt.Println(c.Value("somekey"))
}
Output:
1000